
Математика
Теория массового обслуживания родилась в датском королевстве в начале XX века под именем «Теория очередей». Первые идеи теории были высказаны директором Копенгагенской телефонной компании Фредериком Йохансоном в 1907 году в статье
«Время ожидания и число вызовов». Затем идеи были математически развиты и оформлены инженером той же компании Агнером Эрлангом. Опубликованную им в 1909 году статью «Теория вероятностей и телефонные переговоры» принято считать краеугольным камнем в фундаменте теории. В 30-х годах теорией очередей серьезно занялся Александр Яковлевич Хинчин в связи с автоматизацией московской городской телефонной сети. В научной литературе прижился введенный тогда Хинчиным термин «теория массового обслуживания» (ТМО), а предмет исследований вскоре стали называть системами массового обслуживания (СМО). ТМО опиралась на фундаментальные работы в области теории случайных процессов Андрея Андреевича Маркова, Андрея Николаевича Колмогорова и ряда других математиков.
Учебное пособие призвано помочь студенту овладеть первичными навыками исследования СМО и построения их моделей.

Математика
Не каждый школьник может ответить на вопрос: зачем столько времени надо уделять прогрессиям? Тем не менее с этими замечательными последовательностями нам приходится сталкиваться довольно часто. Так, взбегая по лестнице, вы, если, конечно, не имеете обыкновения перепрыгивать через ступеньки, поднимаетесь с каждым шагом на постоянную величину по закону арифметической прогрессии. В записи числа веса его разрядов образуют геометрическую прогрессию со знаменателем 10, т. е. 1, 10, 100, 1000 и т. д.
Термин "прогрессия" происходит от латинского progressio, что значит движение, рост. Прогрессии интересуют людей с тех пор, как возникли первые цивилизации. Еще в клинописных текстах Древнего Вавилона, относящихся ко II тысячелетию до н. э., были обнаружены задачи на финансовые вычисления, решение которых предполагает умение обращаться с такими последовательностями, например: За какое время удвоится денежная сумма, ссуженная под 20 годовых процентов?. Хотя бы минимальное знакомство с финансовыми вычислениями необходимо любому человеку. Иначе в некоторых жизненных ситуациях он может оказаться беззащитен. Поэтому первые две главы книги посвящены собственно прогрессиям, а третья - их приложениям в финансовых вычислениях.

Математика
Книга позволит получить основные навыки создания баз данных в Microsoft Access.
Автор исходил из того, что лучший способ научиться программировать -- самому написать программу. Приложение Access читателю предлагается создать совместно с автором. Это будет база данных, отражающая работу школьных кружков. Для ее разработки мы ограничимся минимальными средствами. В частности, не будем использовать модули, написанные на встроенном языке VBA -- Visual Basic for Applications. Зато подробно проиллюстрируем стандартные действия, которые выполняются в процессе разработки баз данных. Пособие ориентировано на практическую составляющую работы и автор, насколько возможно, избегал углубления в теоретические вопросы.

Математика
В основу настоящей работы легли материалы спецкурса
«Теория полезности денег», читаемого автором для
студентов математического факультета Петрозаводского
госуниверситета. В работе рассмотрен ряд задач, в
которых «не работает» математическое ожидание, но
оценка случайной величины (жребия) по моральному
ожиданию приводит к результатам, адекватным поведению
реальных экономических субъектов. Особое внимание
уделено оптимальному по моральному ожиданию
портфелю ценных бумаг.

Математика
Книга посвящена особому классу задач, который называют "софизмами". Суть их в том, что требуется найти ошибку в заведомо ложном доказательстве. Последнее иногда оказывается довольно сложно. Не случайно с греческого "софизм" можно перевести как хитрая выдумка, уловка. Некоторые софизмы возникли еще в античном мире, скорее всего в результате ошибок в серьезных рассуждениях. Но история происхождения большей их части навсегда останется тайной. Зачем нужны такие задачи? На этот вопрос ответил в предисловии к одной из своих книг известный популяризатор науки, профессор Геттингенского университета немецкий математик Карл Литцман: "Серьезное значение изучения ошибок и софизмов для воспитания математического мышления, как кажется автору, еще недостаточно осознано. Не только учитель должен иметь дело с ошибками, которые делают его ученики; сами учащиеся зачастую научаются большему на примере разъясненной ошибки, чем даже при правильном выполнении по готовым образцам задач и упражнений

Математика
В книге рассказывается об истории возникновения ряда наиболее известных математических символов. Отношения между символами и их творцами неоднозначны: иногда один ученый вводит в употребление несколько символов, а порой над различными вариантами одного символа трудится множество авторов. Поэтому книга разбита на две части: «Символы» и «Биографические справки». Данные о происхождении большинства из рассмотренных в книге символов можно найти в трехтомнике «История математики с древнейших времен до начала XIX столетия» под редакцией Адольфа Павловича Юшкевича и монографии Николая Ивановича Стяжкина «Формирование математической логики», которые, однако, рассчитаны на читателя с солидной математической подготовкой. Предлагаемое же учебное пособие рассчитано в первую очередь на учащегося средней школы.
По структуре учебное пособие можно рассматривать, как справочник. В первой части в алфавитном порядке (по названию) представлены символы. Во второй части также в алфавитном порядке – краткие биографии их творцов, снабженные ссылками на литературные источники из списка, приложенного в конце книги. Приложенный список в частности содержит большое количество биографической литературы

Математика
В основу настоящей работы легли материалы спецкурса
«Теория полезности денег», читавшегося автором для
студентов математического факультета Петрозаводского
госуниверситета. Книга посвящена вопросам: каким условиям должны удовлетворять классическая функция полезности и функциея Фридмена.

Математика
Книга посвящена задачам, связанным с последовательным удвоением чисел, и ее можно рассматривать как приложение к опубликованному ранее учебному пособию "Прогрессии". Материал построен так, что пищу для размышления может найти и младший, и старший школьник. Надеемся, книга окажется полезной также учителям при подготовке занятий по темам <<Прогрессии>> и <<Системы счисления>>.
В первом параграфе вы познакомитесь с египетским счетом. Такой способ счета впервые упоминается в папирусе Ренда, датируемом примерно 1 800 г. до н. э. Поскольку египетский счет позволяет обучить любого человека делению и умножению, минуя мучительную стадию заучивания таблицы умножения, он был широко распространен в Европе вплоть до начала XX в. Интересно, что в зарубежной литературе египетский счет иногда называли <<способом умножения чисел, применяемым русскими крестьянами>>.
В следующих параграфах мы затронули проблему оптимального набора гирь, вспомнили древнюю легенду об изобретателе шахмат, совершили экскурсию в египетский лабиринт и разобрали популярную среди азартных игроков стратегию мартингейла. Задачи изложены в форме рассказа о пиратах.

Математика
Основное назначение книги – помочь учащемуся старших классов систематизировать, творчески усвоить программу средней школы, а также адаптировать будущего студента к программе высшей школы. Поэтому книга будет полезна и первокурсникам, только приступившим к изучению высшей математики. Не в последнюю очередь мы надеемся, что учебное пособие окажутся полезными учителям математики, особенно преподающим в физико-математических классах.
В процессе работы над книгой авторы опирались на личный опыт подготовки абитуриентов к вступительным экзаменам и опыт преподавания на различных факультетах ПетрГУ, который показывает, что многим студентам, вплоть до старших курсов, не дают успешно учиться пробелы в знаниях по элементарной математике. А это, как зубная боль: пока серьезно не возьмешься за лечение, будет мешать. Мы не считаем главной целью обучения сдачу ЕГЭ. Любой экзамен - всего лишь один из методов контроля качества усвоенного материала, и, к сожалению, его успешная сдача далеко не всегда означает готовность подняться на следующую ступень образования.

Математика
Термин «симметрия» означает инвариантность (неизменность) относительно каких-либо преобразований. Такие явления мы постоянно встречаем в живой и неживой природе, искусстве. Любому закону сохранения соответствует своя симметрия физических систем. Согласно третьему закону Ньютона, симметричны взаимодействия тел. Так, Земля притягивает нас с той же силой, с какой мы притягиваем Землю. С древних времен человека завораживала волшебная структура кристаллов – от драгоценных камней до простой снежинки. Нам доставляет удовольствие созерцать группу симметрий в соцветии. Зеркально симметричны левая и правая части человеческого тела. Неудивительно, что это находит отражение в геометрических, алгебраических и других математических моделях, описывающих явления окружающей нас действительности. Таким образом, уравнения, которые мы собираемся рассмотреть, вовсе не «плод измышлений праздного ума».
Надеемся, пособие поможет учащемуся овладеть навыками эффективного решения не только симметрических, но и целого класса других систем алгебраических уравнений. Обычно школьник решает их методом подстановки. Это наиболее универсальный метод, но зачастую громоздкий и требующий большого умственного напряжения. Выполнение самого сложного задания связано с применением ряда относительно простых приемов. И если каждый из них будет требовать значительных затрат времени и сил, мы просто не дойдем до результата. Нам нужны простые, короткие и красивые решения.
Учебное пособие снабжено подборкой задач, которые могут пригодиться учителю при подготовке домашних и контрольных заданий.
Большая часть материала доступна ученику девятого класса, но встречаются задачи, рассчитанные на старшеклассника. Такие примеры обычно расположены в конце текущего раздела книги, и их можно пропустить без ущерба для понимания материала следующего параграфа.